Reconfigurable Inverted Index

Yusuke Matsui¹ Ryota Hinami² Shin'ichi Satoh¹

¹National Institute of Informatics

²The University of Tokyo

Approximate nearest neighbor search

Database vectors

[5.22]	[4.63]	[0.86]
0.54	[4.63] 6.21	3.44
1.66	0.72	1.12
[0.74]	[0.31]	[0.04]
\boldsymbol{x}_1	\boldsymbol{x}_2	\boldsymbol{x}_N

Approximate nearest neighbor search

hash-table, trees, inverted-index, etc

Database vectors

Approximate nearest neighbor search

hash-table, trees, inverted-index, etc

Database vectors

[5.22]	[4.63]	[0.86	6]
[5.22] [0.54]	6.21	3.44	4
1.66	0.72	1.17	2
[0.74]	[0.31]	L0.04	4]
x_1	\boldsymbol{x}_2	\boldsymbol{x}_l	V

Related work

- Locality-sensitive-hashing (LSH)
 - FALCONN [Andoni+, 15] [Razenshteyn+, 18]
- Project/tree-based
 - FLANN [Muja+, 14]
 - Annoy [Bernhardsson, 18]
- Graph traversal
 - NSW/HNSW on NMSLIB [Malkov+, 16][Boytsov+, 13]
- Product quantization (PQ)
 - IVFPQ on Faiss [Jégou+, 11][Johnson+, 17] etc.
 - Our Reconfigurable Inverted Index

Subset search problem

- > Existing ANN systems are fast for the all vectors
 - Search is over $S = \{1, ..., N\}$
- > However, it is **hard** to run the search for a subset
 - Search is over $S \subseteq \{1, ..., N\}$
 - e.g., searching from $\{x_{1000}, ..., x_{2000}\}$
 - Why? Systems are usually optimized for $S = \{1, ..., N\}$

There is a demand for subset search!

There is a demand for subset search!

Reconfigurable inverted index (Rii)

Reconfigurable inverted index (Rii)

Preliminary: Product quantization (PQ) [Jégou+, TPAMI 11]

PQ: Compress a vector into a short code

$$\mathbb{R}^4 \to \{ \square, \square, \dots \}^2$$

All database vectors are PQ-encoded beforehand

\boldsymbol{x}_1	\boldsymbol{x}_2	$oldsymbol{x}_N$
[5.22]	[4.63]	[0.86]
0.54	6.21	3.44
1.66	0.72	1.12
$\lfloor 0.74 \rfloor$	[0.31]	0.04
PQ	PQ	PQ
1	2	N
		• • •

Preliminary: Product quantization (PQ) [Jégou+, TPAMI 11]

 \triangleright The subset search is possible with a linear cost of $|\mathcal{S}|$

The search is efficient only if |S| is small

Reconfigurable inverted index (Rii)

> Preliminary

- PQ linear scan <

> Data structure

Fast if |S| is large

> Evaluation

Cherry pick! Always fast

Preliminary: Inverted Index + PQ (IVFPQ) [Jégou+, TPAMI 11]

- ➤ Current basic data structure for a large-scale search
- \triangleright Subset-search is possible only if |S| is large

e.g., $S = \{13, 92, 105, \dots\}$

Preliminary: Inverted Index + PQ (IVFPQ) [Jégou+, TPAMI 11]

- ➤ Current basic data structure for a large-scale search
- \triangleright Subset-search is possible only if |S| is large

- 1. Find the closest space: $k^* = \operatorname{argmin}_k ||q c_k||_2^2$
- 2. Focus the k^* th space, accept items $\in S$
- 3. Re-rank the items via PQ-linear scan

Preliminary: Inverted Index + PQ (IVFPQ) [Jégou+, TPAMI 11]

Current basic data structure for a large-scale search

 \triangleright Subset-search is possible only if |S| is large e.g., $S = \{13, 92, 105, \dots\}$ $\widehat{n} \in \mathcal{S}$ or not [0.23] 3.15 0.65 [1.43] Re-rank via $q \in \mathbb{R}^D$ *c*₁₃ (92) PQ-linear scan Runtime Why is it slow for small |S|? e.g., if |S| is small and they are far away from 1. Find t the query, we might need to scan all items 2. Focus N

Reconfigurable inverted index (Rii)

> Search

Cherry pick! Always fast

Data structure

- >Store (1) PQ-codes linearly, and (2) IDs as an inverted index
- Can run either PQ-linear-scan or IVFPQ with a single data structure

Reconfigurable inverted index (Rii)

[0.23]

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright Set a threshold θ
- Frey: Switch two methods based on $|S| \le \theta$

- \triangleright If |S| is small, run PQ-linear scan
- \triangleright If |S| is large, run IVFPQ

- \triangleright Set a threshold θ
- Frey: Switch two methods based on $|S| \le \theta$

Evaluation

>SIFT1M ($N = 10^6$, D = 128). Results for top-R search

Evaluation

- Existing system: Annoy
- Force to search a subset

>SIFT1M ($N = 10^6$, D = 128). Results for top- \overline{R} search

\$ pip install rii |


```
import rii
import nanopq
# Prepare a PQ/OPQ codec with M=32 sub spaces
codec = nanopq.PQ(M=32).fit(vecs=Xt) # Trained using Xt
# Instantiate a Rii class with the codec
e = rii.Rii(fine quantizer=codec)
# Add vectors
e.add configure(vecs=X)
# Search
ids, dists = e.query(q=q, topk=3, target ids=5)
print(ids, dists) # e.g., [7484 8173 1556] [15.062 15.385 16.169]
```

Summary

Approximate NN Search

Reconfigurable inverted index:

- ➤ Store PQ-codes linearly
- \triangleright Switch method based on |S|

➤PyPI:

➤One thing I couldn't mention:

Reconfiguration: the system remains fast even after many new items are added

- >See our paper, or come to our poster:
 - ✓ Poster session 5 (15:30 16:30)

Example: Image search

Result [0.20]3.25 0.72 [1.68] \boldsymbol{x}_{74}

74th image

Example of subset search for image

Evaluation

- > Extensive comparison against existing methods
- For a fixed accuracy (Recall@1), check runtime and its disk space

Dataset	Method	Parameters	Recall@1 (fixed)	Runtime/query	Disk space	Build time
SIFT1M	Annoy [11]	$n_{\text{trees}} = 2000, k_{\text{search}} = 400$	0.67	0.18 ms	1703 MB	899 sec
	FALCONN [1, 41]	$n_{\text{probes}} = 16$	0.63	0.87 ms	-	1.8 sec
	NMSLIB (HNSW) [14, 33, 39]	efS = 4	0.67	0.043 ms	669 MB	436 sec
311 1 11/1	Faiss (IVFADC) [25, 26]	$K = 10^3, M = 64, n_{\text{probe}} = 4$	0.67	0.61 ms	73 MB	30 sec
	Rii (proposed)	$K = 10^3, M = 64, L = 5000$	0.64	0.73 ms	69 MB	82 sec
	Rii-OPQ (proposed)	$K = 10^3, M = 64, L = 5000$	0.65	0.82 ms	69 MB	85 sec
	Annoy [11]	$n_{\text{trees}} = 2000, k_{\text{search}} = 2000$	0.49	1.2 ms	5023 MB	2088 sec
GIST1M	FALCONN [1, 41]	$n_{\text{probes}} = 512$	0.53	8.6 ms	-	7.2 sec
	NMSLIB (HNSW) [14, 33, 39]	efS = 8	0.49	0.19 ms	3997 MB	1576 sec
	Faiss (IVFADC) [25, 26]	$K = 10^3, M = 240, n_{\text{probe}} = 8$	0.52	3.8 ms	253 MB	51 sec
	Rii (proposed)	$K = 10^3, M = 240, L = 8000$	0.45	3.2 ms	246 MB	353 sec
	Rii-OPQ (proposed)	$K = 10^3, M = 240, L = 8000$	0.50	3.8 ms	249 MB	388 sec

Evaluation

- > Extensive comparison against existing methods
- For a fixed accuracy (Recall@1), check runtime and its disk space

Dataset	Method	Parameters	Recall@1 (fixed)	Runtime/query	Disk space	Build time
SIFT1M	Annoy [11]	$n_{\text{trees}} = 2000, k_{\text{search}} = 400$	0.67	0.18 ms	1703 MB	899 sec
	FALCONN [1, 41]	$n_{\text{probes}} = 16$	0.63	0.87 ms	-	1.8 sec
	NMSLIB (HNSW) [14, 33, 39]	efS = 4	0.67	0.043 ms	669 MB	436 sec
317 1 11/1	Faiss (IVFADC) [25, 26]	$K = 10^3, M = 64$ robe = 4	0.67	0.61 ms	73 MB	30 sec
	Rii (proposed)	$K = 10^3, M = 5000$	0.64	0.73 ms	69 MB	82 sec
	Rii-OPQ (proposed)	$K = 10^3 = 5000$	0.65	0.82 ms	69 MB	85 sec
	Annov [11]	2000	0.49	1.2 ms	5023 MB	2088 sec
NMSLIB is extremely fast, but consume relatively large disk space (~memory)			0.53	8.6 ms	-	7.2 sec
			0.49	0.19 ms	3997 MB	1576 sec
			0.52	3.8 ms	253 MB	51 sec
			0.45	3.2 ms	246 MB	353 sec
	Kii-OFQ (proposed)	$K = 10^{\circ}, M = 240, L = 8000$	0.50	3.8 ms	249 MB	388 sec

Evaluation

KII-OPQ (proposed)

- > Extensive comparison against existing methods
- For a fixed accuracy (Recall@1), check runtime and its disk space

Dataset	Method	Parameters	Recall@1 (fixed)	Runtime/query	Disk space	Build time
	Annoy [11]	$n_{\text{trees}} = 2000, k_{\text{search}} = 400$	0.67	0.18 ms	1703 MB	899 sec
	FALCONN [1, 41]	$n_{\text{probes}} = 16$	0.63	0.87 ms	-	1.8 sec
SIFT1M	NMSLIB (HNSW) [14, 33, 39]	efS = 4	0.67	0.043 ms	669 MB	436 sec
31F 1 1W1	Faiss (IVFADC) [25, 26]	$K = 10^3, M = 64$ robe = 4	0.67	0.61 ms	73 MB	30 sec
	Rii (proposed)	$K = 10^3, M = 5000$	0.64	0.73 ms	69 MB	82 sec
	Rii-OPQ (proposed)	$K = 10^3 = 5000$	0.65	0.82 ms	69 MB	85 sec
	Ληηου [11]	. = 2000	0.49	1.2 ms	023 MB	2088 sec
			0.53	8.6 ms		7.2 sec
NMSLIB is extremely fast, but consume relatively large disk space (~memory)			0.49	0.19 ms	MВ	1576 sec
			0.52	3.8 ms		51 sec
Telati	ivery large uisk spac		0.45	3.2 ms		353 sec

Proposed Rii achieved a comparative performance with Faiss