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Approximate nearest neighbor search
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Related work

» Locality-sensitive-hashing (LSH)
- FALCONN [Andoni+, 15] [Razenshteyn+, 18]
» Project/tree-based
- FLANN [Muja+, 14]
- Annoy [Bernhardsson, 18]
» Graph traversal
- NSW/HNSW on NMSLIB [Mmalkov+, 16][Boytsov+, 13]
» Product quantization (PQ)
- IVFPQ on Faiss [Jégou+, 11][Johnson+, 17] etc.
- Our Reconfigurable Inverted Index
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Approximate NN Search Result
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Subset search problem

» Existing ANN systems are fast for the all vectors
- Searchisover§ ={1,...,N}

» However, it is hard to run the search for a subset
- Searchisover§ c {1,...,N}

- e.g., searching from {X1000, ---» X2000}

- Why? Systems are usually optimized for § = {1, ...
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There is a demand for subset search!

2 facebookresearch / faiss @ Unwatch~ 216 Unstar 3254  YFork 602 Y spotify / annoy @ Unwatch~ 246 W Unstar 3,207 YFork 399

Code

@ lIssues 19 Pull requests 4 Projects 2 Wiki Insights

How to search by ID range?

(GROLTNE hipitt opened this issue on 29 Jan - 1 comment

o

hipitt commented on 29 Jan - edited =

If | create an index with 100,000 data (IndexFlatL2, IndexIDMap2), each data has a different timestamp as ID.
Mow use the time range to query the data, which contains only 10,000 data (or ids) as the data being
queried.

Mow | do this by using "numpy.where(cond)" to find the ID in the time range, using "index.reconstruct({lD)" to
take out the data, and then creating a new index (faiss. Index_factory (128, 'IDMap.Flat’). and searching. It's
inefficient.

How to do scope queries without creating new index?
What is the correct way to do it?

mdouze commented on 29 Jan Contributer

Faiss is not a DBMS where you can query by any field, only similarity queries are supported. I

® filter the output of Faiss

® not use Faiss at all, make a linear array of ids, and filter the output of that array sequentially.

o & mdouze added the [EIEY label on 29 Jan

@ R hipitt closed this on 30 Jan

rd ﬂ hipitt changed the title from How to search by range of ID? to How to search by ID range? on 30 Jan

Assignees

No one assigned

Labels

Projects

None yet

Milestone

No milestone

Notifications

4x Unsubscribe

You're receiving notifications because
yeu're subscribed to this repository.

2 participants

AR

Code

@ Issues 14 Pull requests 3 Projects 0 Wiki Insights

Working with subsets

(GReLENN FlorianWilhelm opened this issue on 18 Jan - 9 comments

-
FOS

FlorianWilhelm commented on 18 Jan

First of all. thanks for providing such a useful piece of software, | find it especially useful when dealing with
embeddings. | was wondering if | can somehow define at query time a subset of items that should be
considered when calculating the kNN.

Let's assume | want to build some kind of search application that besides some user provided filters also
considers the preferences | have collected about the user in form of an user embedding. | could for instance
use ElasticSearch to retrieve a list of feasible item ids fulfilling the user's filter criteria. Now | want to find the
kMN given the user's embedding in my index of all documents but restricted to the subset of feasible items
which | retrieved before,

Another possibility to solve this would be if you allow me to add metadata when adding an item to the
annoy index. With an additionally provided filter clause annoy could then only consider the item vectors
having the defined metadata when calculating the kNN.

How is Spotify solving this problem, anyhow? Do you have an extended version of annoy?
é 1

erikbern commented on 18 Jan Collaborator

ISUrry - none of these things are easy to support using Annuyl

alkOn commented on 18 Jan Contributor

Effectively you have to ask for a bunch of extra items, and then filter them down using your external
metadata. AFAIK this is still the same Annoy used internally at Spotify -- in that case it's usually an item
blacklist (e.g. stuff the user is already quite familiar with).

Assignees

Ne one assigned

Labels

Mone yet

Projects

None yet

Milestone

No milestone

Notifications

x Unsubscribe

You're receiving notifications because
you're subscribed to this repository.

3 participants

GHiE
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There is a demand for subset search!

2 facebookresearch / faiss @ Unwatch~ 216 Unstar 3254  YFork 602 Y spotify / annoy @ Unwatch~ 246 W Unstar 3,207 YFork 399

Code

ais Propose: Reconfigurable inverted index (Rii
¥ v Subset search

v' A comparative performance with IVFPQ (Faiss)
v 10 ms for billion-scale data

d* Unsubscribe How is Spotify solving this problem, anyhow? Do you have an extended version of annoy? ox Unsubscribe
You're receiving notifications because You're receiving notifications because
yeu're subscribed to this repository. é 1 you're subscribed to this repository.
® filter the output of Faiss ici m . 3 participant:
P 2 participants o erikbern commented on 18 Jan Collaborator participants
® not use Faiss at all, make a linear array of ids, and filter the output of that array sequentially. B q e md &
I8

ISUrry - none of these things are easy to support using Annuyl

< & mdouze added the [EIEY label on 29 Jan

alkOn commented on 18 Jan Contributor

@ R hipitt closed this on 30 Jan

Effectively you have to ask for a bunch of extra items, and then filter them down using your external

. metadata. AFAIK this is still the same Annoy used internally at Spotify -- in that case it's usually an item
L . > P
I ﬂ hipitt changed the title from How to search by range of ID? to How to search by ID range? on 30 Jan blacklist (e.g. stuff the user is already quite familiar with).
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Reconfigurable inverted index (Rii)

»Preliminary Fast if ||

- PQ linear scan s smel

- IVFPQ Fast if |S|
> Data struct s laree
»Search 1 Cherry pick
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Reconfigurable inverted index (Rii)
»Preliminary Fast if | S|

. is small
- PQ linear scan z

= IVFPQ Fastif|5|
> Data structur s aree
»Search Cherry pick!
Always fast
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Preliminary: Product quantization (PQ) pegou+, TPami 11]

PQ: Compress a vector All database vectors are PQ-encoded beforehand

into a short code

R* - {0 ..}2

X1 X2 XN

'5.22] '5.227[4.63 '0.86]
0.54 }% ] 0.54]16.21 . 3 44
— 1.66|10.72 1.12

(1)'22 }ﬂ@ - 0.74110.31. 10.04
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Preliminary: Product quantization (PQ) pegou+, TPami 11]

»The subset search is possible with a linear cost of |5}

argmin d (q, ﬁ) e.g.,d = {2, 4,5, 8}

nes v o Y
o N ® © ©
3.15 . L | L

11.43]
q € RP

> The search is efficient
only if |§] is small

Runtime
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Reconfigurable inverted index (Rii)
»Preliminary

Fast if |S]
. is small
- PQ linear scan z

= IVFPQ Fastif|5|
> Data structur *orEe
> Sea rCh Cherry pick!
. Always fast
» Evaluation ﬂ
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Preliminary: Inverted Index + PQ (IVFPQ) uégou+, Trami 11]

» Current basic data structure for a large-scale search
»Subset-search is possible only if |§] is large

® &
o o e
‘\/EZZ

Space partitioning
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Preliminary: Inverted Index + PQ (IVFPQ) uégou+, Trami 11]
» Current basic data structure for a large-scale search

lllllllllllllllllllllllllllllllllllllllllllllllllllll

»Subset-search is possible only if [S| is large {'eg s = {13,92,105, ...}

@ _
023 —1 [ |l € S or not
3.15 S— I
0.65 | L .
1.43 /
q € RP v v Re-rank via
® PQ-linear scan
: L e |
4 B8t B

Space partitioning

1.Find the closest space: k* = argming||q — ¢k |5
2.Focus the k™th space, accept items € § >

3.Re-rank the items via PQ-linear scan
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Preliminary: Inverted Index + PQ (IVFPQ) uégou+, Trami 11]
» Current basic data structure for a large-scale search

lllllllllllllllllllllllllllllllllllllllllllllllllllll

»Subset-search is possible only if |S| is large e.g., S ={13,92,105, ...}

023 N o T |@ € S or not

3.15 e m— : '
0.65 I . %(m ...................................
1.43. .
q € RP v v Re-rank via

PQ-linear scan

Why is it slow for small |§]?

e.g., if |§| is small and they are far away from
the query, we might need to scan all items

Runtime
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Reconfigurable inverted index (Rii)
»Preliminary Fast if ||

. is small
- PQ linear scan z

= IVFPQ Fastif|5|
> Data structur s large
»Search Cherry pick!
Always fast




slides: https://bit.ly/2POKuwW1

Data structure

»Store (1) PQ-codes linearly, and (2) IDs as an inverted index
»Can run either PQ-linear-scan or IVFPQ with a single data structure

O, @ @ @ Key: store codes linearly

» PQ-codes are also chunked. Natural
i » Slight, but critical change

=
(00}
(0]

®
LI [®©L 1]
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Reconfigurable inverted index (Rii)
»Preliminary Fast if ||

. is small
- PQ linear scan z

= IVFPQ Fast if |5
> Data structur s aree
»Search Cherry pick!
Always fast
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Search

[0.23]
3.15
0.65

11.43]

q € RP
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Search
»If | S| is small, run PQ-linear scan

Runtime

/

stV




Search

»>If |S]|is large, run IVFPQ
O & ©)

[ [
L1 ]

[0.23]
3.15
0.65

11.43]

q € RP

Runtime
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Search

»If | S| is small, run PQ-linear scan
»>If |S]|is large, run IVFPQ

® ® g /
o - S|V
B
fetch é \
/@ 5
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Search

»If | S| is small, run PQ-linear scan
»>If |S]|is large, run IVFPQ
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»Set a threshold 6
» Key: Switch two methods
basedon |S| = 6

6 N
S|
Use PQ-linear-scan

Runtime




slides: https://bit.ly/2POKuwW1

Search
»If | S| is small, run PQ-linear scan iSEt _a th.reshhold 0 "
»>If |S]|is large, run IVFPQ Key: Switch two methods

basedon |S| = 6

™
—

©
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|®
\
\
»

I
i .
|
2 101 i LA
- . ; o
- ] ”
v | == PQ linear scan (Alg. 1) i x’
o Inverted index (Alg. 2) P
Y 100 —e— Final query (Alg. 3) i
g ] |
= |
- |
=z |
10714 . ] -
103 104 6 10°
|S|
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Evaluation
>SIFTAM (N = 10°, D = 128). Results for top-R search
%) 104-5 """-.. == Annoy+PC: R=1
3 ."*... & == Annoy+PC: R=10
£ 103- ’““"—Q\ Tt =@= Annoy+PC: R =100
— § === , =T, <, == Rii:R=1
. : A nimd, **.‘ —®= Rii:R=10
g 10%; e =@ Rii: R=100
o : N R -
5 101 by e 2 R P
g- 101_ Sy .
v ]
£ 1001
= 5
-
e 101

102 10 10 10°
|51



Evaluation
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Runtime per query [msec]
|—l
<

=
o
X,

The existing system is slow,
especially when |§| is small =@~ Annoy+PC:R=1

>SIFTIM (N = 10°, D = 128). Results for top-R search \/

» Existing system: Annoy
» Force to search a subset

Annoy+PC: R=10
== Annoy+PC: R=100
=@= Ril:R=1
=@®= Rii: R=10
=@®= Rii: R=100

i Y
=

107

Proposed Rii is always fast
15| regardless of |S| and R



slides: https://bit.ly/2POKuwW1

$ pip install rii O https://github.com/matsui528/rii

import rii
import nanopq

codec = nanopq.PQ(M=32).fit( =Xt)

e = rii.Rii( =codec)

e.add configure( =X)

ids, dists = e.query(g=q, =3, =S)

print(ids, dists)


https://github.com/matsui528/rii
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Summary |
Approximate NN Search
inllq — x, 13
3.15 drgmin — X
11.43.

Reconfigurable inverted index: » PyPI:

» Store PQ-codes linearly
» Switch method based on |S]|

Runtime

$ pip install rii

»0One thing | couldn’t mention:

Reconfiguration: the system remains fast

even after many new items are added

> See our paper, or come to our poster:
v" Poster session 5 (15:30 — 16:30)

Use PQ-linear-scan
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Approximate NN search Result

[0.20]
3.25

Example: Image search
0.72

0.23]

3.15

0.65 ANN system

11.43] 11.68]

q€R” X74

argmin ||q — x, |5
ne{l,..,N}

Extract a
VGG feature

o

AR

74" image




slides: https://bit.ly/2POKuwW1

Example of subset search for image

g € RP

Extract a
VGG feature

0.23]
3.15
0.65 ANN system
11.43

R = e
| SEaey |

N atabase images

Approximate NN search Result
0.20]

argmin||q — x,13 325
nes 1.68.

Filtering by shooting-date:
- Takenin 2018
- § ={34,56,92, ...,663}

92"d image



Evaluation

» Extensive comparison against existing methods
» For a fixed accuracy (Recall@1), check runtime and its disk space
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Dataset  Method Parameters Recall@! (fixed) Runtime/query Disk space Build time
Annoy [11] Nirees = 2000, Keaqrch = 400 0.67 0.18 ms 1703 MB 899 sec
FALCONN [1, 41] Mprobes = 10 0.63 0.87 ms - 1.8 sec

sipriv NMSLIB (HNSW) [14, 33,39]  efS = 4 0.67 0.043 ms 669 MB 436 sec
Faiss (IVFADC) [25, 26] K =10% M = 64, Nprobe =4 0.67 0.61 ms 73 MB 30 sec
Rii (proposed) K =10°,M = 64,L = 5000 0.64 0.73 ms 69 MB 82 sec
Rii-OPQ (proposed) K =10, M = 64, L = 5000 0.65 0.82 ms 69 MB 85 sec
Annoy [11] Nirees = 2000, kooorc, = 2000 0.49 1.2 ms 5023 MB 2088 sec
FALCONN [1, 41] Mprobes = 912 0.53 8.6 ms - 7.2 sec

. NMSLIB (HNSW) [14, 33,39] efS =8 0.49 0.19 ms 3997 MB 1576 sec

GIST1IM . . o . 3
Faiss (IVFADC) [25, 26] K =10", M = 240, npohe =8  0.52 3.8 ms 253 MB 51 sec
Rii (proposed) K =10° M =240.L = 8000  0.45 3.2 ms 246 MB 353 sec
Rii-OPQ (proposed) K =10°, M = 240,L = 8000  0.50 3.8 ms 249 MB 388 sec
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» Extensive comparison against existing methods
»For a fixed accuracy (Recall@1), check runtime and its disk space
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Dataset  Method Parameters Recall@1 (fixed) Runtime/query Disk space Build time
Annoy [11] Nirees = 2000, Keaqrch = 400 0.67 0.18 ms 1703 MB 899 sec
FALCONN [1, 41] Mprobes = 10 0.63 0.87 ms - 1.8 sec

SIFTIM NMSLIB (HNSW) [14, 33,39] efS =4 0.67 0.043 ms 669 MB 436 sec
Faiss (IVFADC) [25, 26] K=10>M=64g8 1. =4 0.67 0.61 ms 73 MB 30 sec
Rii (proposed) K =10 M = 5000 0.64 0.73 ms 69 MB 82 sec
Rii-OPQ (proposed) 0.65 0.82 ms 69 MB 85 sec

0.49 1.2 ms 5023 MB 2088 sec
. 0.53 8.6 ms - 7.2 sec
NMSLIB is extremely fast, but consume 0.49 0.19 ms 3097 MB 1576 sec
0 0 0.52 3.8 ms 253 MB 51 sec
relatively large disk space (~memory) os o A MB 253 o
0.50 3.8 ms 249 MB 388 sec
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Evaluation

» Extensive comparison against existing methods
» For a fixed accuracy (Recall@1), check runtime and its disk space

Dataset  Method Parameters Recall@1 (fixed) Runtime/query Disk space Build time
Annoy [11] Nirees = 2000, Keaqrch = 400 0.67 0.18 ms 1703 MB 899 sec
FALCONN [1, 41] Mprobes = 10 0.63 0.87 ms - 1.8 sec

SIFTIM NMSLIB (HNSW) [14, 33, 39] efS =4 0.67 0.043 ms 669 MB 436 sec
Faiss (IVFADC) [25, 26] K=10>M=64g8 1. =4 0.67 0.61 ms HW] 30 sec
Rii (proposed) K =10, = 5000 0.64 [0.73 ms 69 MB 82 sec
Rii-OPQ (proposed) K = 1g = 5000 0.65 0.82 ms 69 MB 85 sec

0.49 1.2 ms 023 MB 2088 sec

. 0.53 8.6 ms 7.2 sec
NMSLIB is extremely fast, but consume 0.49 0.19 ms B 1576 sec
0.52 3.8 ms 51 sec

relatively large disk space (~memory)

() 4]

= U] — 10U NV — 230, L —

' Proposed Rii achieved a comparative

performance with Faiss



