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1. Generate candidate scheme using multise-
quence algorithm

We review the multisequence algorithm [1] using our ef-
ficient implementation in App. Alg. 1. It consists of two
steps: initialization (Init) and code generation (NextCode).

Initialization: For the initialization, given a query vec-
tor x and codewords C, x is divided into subvectors xm, and
coded by corresponding subcodewords Cm. When coding,
the distances from the xm to each subcodeword cmk ∈ Cm
are recorded in d table[m], and sorted. Note d table is an
M × K 2D array consisting of tuples. Each tuple is com-
posed the ID1 of the centroids and a distance to the query.

Then, the indices of the closest subcodewords are col-
lected and used to construct the nearest code, which is then
kept in cand. Note cand is a priority queue composed of
tuples. Each tuple consists of a code and its distance to the
query, sorted by the distance, where the distance is auto-
matically computed by looking up d table when pushing2.
cand holds candidates of the final output. The computa-
tional cost of the initialization is O(K(D + logK)) for en-
coding and sorting, which is negligible for a large database.

Code generation: To generate a code, the nearest code
to the query is popped from the priority queue, which con-
sists of candidates of the nearest code.

For generation of the next-nearest candidates, new
candidates of codes are computed as follows. Sup-
pose the popped code is constructed by IDs, from
(d table[1][k1], . . . , d table[M ][kM ]). We construct
M new codes, where each of them is constructed
by IDs from (d table[1][k1], . . . , d table[m][km +
1], . . . , d table[M ][kM ]), for m = 1 . . .M . These M

1To avoid confusion, we use “ID” to represent the ID-th centroids of
subquantizers and “identifier” to denote database vectors.

2Note that this priority queue does not contain duplicate codes as a
result of checking the code when pushing a new tuple into the priority
queue, using another supplemental hash table. This “checking” step is a
different implementation to the original method [1], where they required an
M -dimensional array to handle this, requiring much more memory. Note
that the results of the two algorithms are exactly the same.

Appendix algorithm 1: Multisequence algorithm [1]
with our efficient implementation.

1 Function Init
Input: x = [x1, . . . ,xM ] // query vector

C = C1 × · · · × CM // codewords
Output: cand // priority queue

d table[ ][ ] // 2D array
2 cand← ∅
3 d table[ ][ ]← ∅
4 for m← 1 to M do
5 for k ← 1 to K do
6 cmk ← k-th center from Cm

d table[m][k]← tuple(k, d(xm, cmk )2)

7 SortByDist(d table[m][ ])

8 code← Collect IDs from d table[m][1]
9 for all m and construct code.

10 cand.Push(code)

11 Function NextCode
Input: cand, d table[ ][ ]
Output: cand, code

12 code← cand.Pop( )
13 Suppose code is constructed by collecting
14 IDs from d table[m][km] for all m.
15 for m′ ← 1 to M do
16 next code← Collect IDs from
17 d table[m][km + a] for all m and construct
18 code where a← 1 if m = m′, else 0.

cand.Push(next code)

new codes are new candidates, and kept in the priority
queue, cand. The NextCode( ) function is called whenever
a new candidate is to be generated.
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2. Proof that required identifiers are included
in the marked identifiers

We prove that all identifiers where their asymmetric dis-
tance (dAD) is less than dAD(x,yu∗) are included in the
marked identifiers.

Hereafter, we denote the ADC from the t-th sequence as
dtAD(x,y), which leads to

T∑
t=1

dtAD(x,y)2 = dAD(x,y)2. (1)

Here, we introduce a proposition.
Proposition: Given a query vector y, suppose there are
sequences of identifiers from each table, where each se-
quence is sorted in ascending order by its distance to the
query (dtAD). If we find the same identifier u∗ from all of
the sequences, then any vectors yu in the database where
dAD(x,yu) < dAD(x,yu∗) have been already included in
the marked identifiers.
Proof: The proposition is proved by contradiction. Suppose
there is an identifier ū, where dAD(x,yū) < dAD(x,yu∗),
and it is not included in the marked identifiers. Because
ū is not included in the marked identifiers, ū must appear
after u∗ in each sequence. This leads to dtAD(x,yu∗) <
dtAD(x,yū) for all t, because each sequence is sorted
in ascending order. By summing up all t, it leads
to dAD(x,yu∗) < dAD(x,yū), which contradicts the
premise.

3. Experimental Results using GIST1M data
We show the performance evaluation using GIST1M

data from the BIGANN dataset [2]. The GIST1M data con-
tain one million 960-D GIST features in the database and
provide vectors for learning and querying, from which we
used 500,000 for learning and 1,000 for querying.

Fig. 1 shows the runtimes per query for the proposed
method and the ADC for the GIST1M dataset. We observed
the same tendencies as for the SIFT1B case. Because the
size of the GIST1M database vectors was only one million,
and our method is most efficient for much larger N , the
speedup factors were not as high as for the SIFT1B dataset,
but they were still always faster than the ADC for all pa-
rameter settings with N = 106.

Note that accuracy of the proposed method is the same
as for ADC: Recall@1=0.031, Recall@10=0.065, and Re-
call@100=0.173, for 32-bit codes, and Recall@1=0.056,
Recall@10=0.125, and Recall@100=0.338, for 64-bit
codes.
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(a) Plot of 32-bit PQ codes.
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(b) Log–log plot of 32-bit PQ codes.
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(c) Plot of 64-bit PQ codes.
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(d) Log–log plot of 64-bit PQ codes.

Figure 1: Runtimes per query for the proposed PQTable
with 1-, 10-, and 100-NN, and a linear ADC scan (GIST1M
dataset).
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